Correlation of interosseous membrane tears to the level of the fibular fracture. Stromsoe K, Hoqevold HE, Skjeldal S, et al. Figure 3 Normal syndesmotic relationships include a tibiofibular clear space (open arrows) <6 . Diagnosis is made with plain radiographs of the ankle. Damage to this nerve may result in deficits in those movements. Rarely, a fracture of the fibula may be. (0/3). The tibia is a larger bone on the inside, and the fibula is a smaller bone on the outside. There is very limited mobility between this syndesmosis. Surgery may also be needed depending on the wound size, amount of tissue damage and any vascular (circulation) problems. Treatment may be nonoperative or operative depending on patient age, fracture displacement, and fracture morphology. The fibula supports the tibia and helps stabilize the ankle and lower leg muscles. Pathophysiology. Mechanisms of injury for tibia-fibula fractures can be divided into 2 categories: low-energy injuries such as ground level falls and athletic injuries; high-energy injuries such as motor vehicle injuries, pedestrians struck by motor vehicles, and gunshot wounds. Sproule JA, Khalid M, OSullivan M, et al. Low-energy, nondisplaced (aligned) fractures, sometimes called toddlers fractures, occur from minor falls and twisting injuries. Are you sure you want to trigger topic in your Anconeus AI algorithm? traveling traction), placed in metaphyseal segment at the concavity of the deformity, posteriorly placed blocking screw in proximal fragment and laterally placed blocking screw in the metaphyseal fragment help direct the nail more centrally, avoiding valgus/procurvatum deformities, increase biomechanical stability of bone/implant construct by 25%, not associated with increased infections, wound complications, and nonunion compared to closed-nailing techniques, ensure fracture is reduced before reaming, overream by 1.0-1.5mm to facilitate nail insertion, confirm guide wire is appropriately placed prior to reaming, should be "center-center" in the coronal and sagittal planes distally at the physeal scar, anterior aspect of nail should be lined up with axis of tibia when inserting nail - typically should line up with 2nd metatarsal in absence of tibial deformity, statically lock proximal and distally for rotational stability, no indication for dynamic locking acutely, number of interlocking screws is controversial, two proximal and two distal screws in presence of <50% cortical contact, consider 3 interlock screws in short segment of distal or proximal shaft fracture, prefer multiplanar screw fixation in these short segments, lateral may have more soft tissue interference but may be preferred in setting of soft tissue/wound issues, generally, minimally invasive plating is used to preserve soft tissues, plate attached to external jig to allow for percutaneous insertion of screws, must ensure appropriate contour of plate to avoid malreduction, higher risk for wound issues, particularly in open fractures, superficial peroneal nerve (SPN) commonly at risk laterally, below knee amputation (BKA) vs. above knee amputation (AKA) based on degree of soft tissue damage, standard BKA vs. ertl/bone block technique, infrapatellar nailing with patellar tendon splitting and paratendon approach, suprapatellar nailing may have lower rate of anterior knee pain, more common if nail left proud proximally, lateral radiograph is best radiographic views to evaluate proximal nail position, pain relief unpredictable with nail removal, all tibial shaft fractures - between 8-10%, higher in proximal 1/3 tibia fractures - up to 50%, patellar tendon pulls proximal fragment into extension, while hamstring tendons and gastrocnemius pull the distal fragment into flexion (procurvatum), distal 1/3 fractures have a higher rate of valgus malunion with IM nailing compared to plating, definitive management with casting or external fixation, most common deformity is varus with nonsurgical management, varus malunion may place patient at risk for ipsilateral ankle pain and stiffness, starting point too medial with IM nailing, adequate reduction, proper start point when nailing, if malalignment is noted immediately after surgery, return to operating room is appropriate with removal of nail, reduction and nail reinsertion, if malunion is appreciated at later followup, eventual nail removal and tibial osteotomy can be considered, most appropriate for aseptic, diaphyseal tibial nonunions, oblique tibial shaft fractures have the highest rate of union when treated with exchange nailing, consider revision with plating in metaphyseal nonunions, BMP-7 (OP-1) has been shown equivalent to autograft, often used in cases of recalcitrant non-unions, compression plating has been shown to have a 92-96% union rate after open tibial fractures initially treated with external fixation, fibular osteotomy of tibio-fibular length discrepancy associated with healed or intact fibula, highest after IM nailing of distal 1/3 tibia fractures, increases risk of adjacent ankle arthrosis, should always assess rotation in operating room, obtain perfect lateral fluoroscopic image of knee, then rotate c-arm 105-110 degrees to obtain mortise view of ipsilateral ankle, may have reduced risk with adjunctive fibular plating, LISS plate application without opening for distal screw fixation near plate holes 11-13 put superficial peroneal nerve at risk of injury due to close proximity, saphenous nerve can be injured during placement of locking screws, transient peroneal nerve palsy can be seen after closed nailing, EHL weakness and 1st dorsal webspace decreased sensation, usually nonoperatively with variable recovery expected, severe soft tissue injury with contamination, longer time to definitive soft tissue coverage, may require I&D or eventual removal of hardware, use of wound vacuum-assisted closure does not decrease risk of infection, Proximal Humerus Fracture Nonunion and Malunion, Distal Radial Ulnar Joint (DRUJ) Injuries. Nonsurgical Treatment. Significant periosteal stripping and soft tissue injury, Significant soft tissue injury (often evidenced by a segmental fracture or comminution), vascular injury. Numbness or paresthesias may arise if damage to the peroneal nerve has occurred. Q: Do syndesmotic screws require removal? Diagnosis is made with plain radiographs of the ankle. In 1 recent study, shin guards did not seem to prevent tibia and fibula fractures in soccer players (14). Generally, fibula fractures do well, and most patients have normal function at long-term follow-up (. Description. This procedure involves placing a piece of foam in the wound and using a device to apply negative pressure to draw the edges of a wound together. The diagnosis is made by x-raying the ankle. Most isolated lateral malleolus fractures are stable enough to allow you to put weight on the . - C1 diaphyseal fracture of the fibula, simple. lawnmower) or iatrogenic during surgical dissection, (patterned off adult Lauge-Hansen classification), Adduction or inversion force avulses the distal fibular epiphysis (SH I or II), Rarely occurs with failure of lateral ligaments, Further inversion leads to distal tibial fracture (usually SH III or IV, but can be SH I or II), Occasionally can cause fracture through medial malleolus below the physis, Plantarflexion force displaces the tibial epiphysis posteriorly (SH I or II), Thurston-Holland fragment is composed of the posterior tibial metaphysis and displaces posteriorly, External rotation force leads to distal tibial fracture (SH II), Thurston-Holland fragment displaces posteromedially, Easily visible on AP radiograph (fracture line extends proximally and medially), Further external rotation leads to low spiral fracture of fibula (anteroinferior to posterosuperior), External rotation force leads to distal tibial fracture (SH I or II) and transverse fibula fracture, Occasionally can be transepiphyseal medial malleolus fracture (SH II), Distal tibial fragment displaces laterally, Thurston-Holland fragment is lateral or posterolateral distal tibal metaphysis, Can be associated with diastasis of ankle joint, Leads to SH V injury of distal tibial physis, Can be difficult to identify on initial presentation (diagnosis typically made when growth arrest is seen on follow-up radiographs), distal fibula physeal tenderness may represent non-displaced SHI, full-length tibia (or proximal tibia) to rule out Maisonneuve-type fracture, assess fracture displacement (best obtained post-reduction), non-displaced (< 2mm) isolated distal fibular fracture, displaced (> 2mm) SH I or II fracture with, acceptable closed reduction (no varus, < 10 valgus, < 10 recurvatum/procurvatum, < 3mm physeal widening), or II fracture with unacceptable closed reduction (varus, > 10 valgus, > 10 recurvatum/procurvatum, > 3mm physeal widening) and > 2 years of growth remaining, displaced SH I or II fracture with unacceptable closed reduction (varus, > 10 valgus, > 10 recurvatum/procurvatum, > 3mm physeal widening) and < 2 years of growth remaining, requires adequate sedation and muscle relaxation, only attempt reduction two times to prevent further physeal injury, NWB short-leg cast if isolated distal fibula fracture, NWB long-leg cast if distal tibia fracture, interposed periosteum, tendons, or neurovascular structures, percutaneous manipulation with K wires may aid reduction, open reduction may be required if interposed tissue present, transepiphyseal fixation best if at all possible, high rate associated with articular step-off > 2mm, medial malleolus SH IV fractures have the highest rate of growth disturbance, 15% increased risk of physeal injury for every 1mm of displacement, can represent periosteum entrapped in the fracture site, partial arrests can lead to angular deformity, distal fibular arrest results in ankle valgus defomity, medial distal tibia arrest results in varus deformity, complete arrests can result in leg-length discrepancy, if < 20 degrees of angulation with < 50% physeal involvement and > 2 years of growth remaining, bar of >50% physeal involvement in a patient with at least 2 years of growth, fibular epiphysiodesis helps prevent varus deformity, if < 50% physeal involvement and > 2 years of growth remaining, contralateral epiphysiodesis if near skeletal maturity with significant expected leg-length discrepancy, typically seen in posteriorly displaced fractures, can occur after triplane fractures, SH I or II fractures, usually leads to an increased external foot rotation angle, anterior angulation or plantarflexion deformity, occurs after supination-plantarflexion SH II fractures, occurs after external rotation SH II fractures, treatment options include physical therapy, psychological counseling, drug therapy, sympathetic blockade, Pediatric Pelvis Trauma Radiographic Evaluation, Pediatric Hip Trauma Radiographic Evaluation, Pediatric Knee Trauma Radiographic Evaluation, Pediatric Ankle Trauma Radiographic Evaluation, Distal Humerus Physeal Separation - Pediatric, Proximal Tibia Metaphyseal FX - Pediatric, Chronic Recurrent Multifocal Osteomyelitis (CRMO), Obstetric Brachial Plexopathy (Erb's, Klumpke's Palsy), Anterolateral Bowing & Congenital Pseudoarthrosis of Tibia, Clubfoot (congenital talipes equinovarus), Flexible Pes Planovalgus (Flexible Flatfoot), Congenital Hallux Varus (Atavistic Great Toe), Cerebral Palsy - Upper Extremity Disorders, Myelodysplasia (myelomeningocele, spinal bifida), Dysplasia Epiphysealis Hemimelica (Trevor's Disease). Fractures of the fibula can be described by anatomic position as proximal, midshaft, or distal. rotation about a planted foot and ankle, accounts for 35-40% of overall tibial growth and 15-20% of overall lower extremity growth, growth continues until 14 years in girls and 16 years in boys, closure occurs during an 18 month transitional period, pattern of closure occurs in a predictable pattern: central > anteromedial > posteromedial > lateral, closure occurs 12-24 months after closure of distal tibial physis, Ligaments (origins are distal to the physes), primary restraint to lateral displacement of talus, anterior inferior tibiofibular ligament (AITFL), extends from anterior aspect of lateral distal tibial epiphysis (Chaput tubercle) to the anterior aspect of distal fibula (Wagstaffe tubercle), plays an important role in transitional fractures (Tillaux, Triplane), posterior inferior tibiofibular ligament (PITFL), extends from posterior aspect of lateral distal tibial epiphysis (Volkmanns tubercle) to posterior aspect of distal fibula, extends from posterior distal fibula across posterior aspect of distal tibial articular surface, functions as posterior labrum of the ankle, Fracture extends through the physis and exits through the metaphysis, forming a Thurston-Holland fragment, Fracture extends through the physis and exits through the epiphysis, Seen with medial malleolus fractures and Tillaux fractures, Fracture involves the physis, metaphysis and epiphysis, Can occur with lateral malleolus fractures, usually SH I or II, Seen with medial malleolus shearing injuries and triplane fractures, Can be difficult to identify on initial presentation (diagnosis is usually made when growth arrest is seen on follow-up radiographs), Results from open injury (i.e. Posterior tibiofibular ligament rupture or avulsion of posterior malleolus, 4. Similar to a nondisplaced medial malleolus fracture, a nondisplaced lateral malleolus fracture can often be treated with a short leg cast or walking boot. The repair of a ruptured deltoid ligament is not necessary in ankle fractures. 2023 Lineage Medical, Inc. All rights reserved, Knee & Sports | Posterolateral Corner Injury, Question SessionPosterolateral Corner Injury. Fractures of the fibular shaft occurring without ankle injury nearly always are associated with tibial shaft fractures. identify joint involvement and articular step-off (>25%, >2mm requires ORIF) . It's possible to fracture the fibula by placing too much pressure on it over and over again. Salter-Harris Type-IV injuries of the distal tibial epiphyseal growth plate, with emphasis on those involving the medial malleolus. Fourth and fifth proximal/middle phalangeal shaft fractures and select metacarpal fractures. The treatment of an open tibial fracture starts with antibiotics and a tetanus shot to address the risk of infection. At its most proximal part, it is at the knee just posterior to the proximal tibia, running distally on the lateral side of the leg where it becomes the lateral malleolus at the level of the ankle. The tibia is much thicker than the fibula. Additionally, lateral collateral ligament of the knee originates from the lateral epicondlye of the femur to insert on the superior portion of the fibular head and is the . Symptoms of a fibula stress fracture. Fibula fractures occur around the ankle, knee, and middle of the leg. A physical examination and X-rays are used to diagnose tibia and fibula fractures. The following article will focus on fractures of the fibula that are proximal to the ankle joint and the treatment of such fractures. Posterior tibiofibular ligament rupture or avulsion of posterior malleolus, Ankle Simple Bimalleolar Fracture ORIF with 1/3 Tubular Plate and Cannulated Screw of Medial Malleol, Ankle Isolated Lateral Malleolus Fracture ORIF with Lag Screw, Question SessionAnkle Fractures & Replantation. The deep peroneal nerve is responsible for sensation over the first dorsal webspace. Lauge Hansen classification: - classification: - C: fibula fracture above syndesmosis. Fibular avulsion fractures most commonly occur from an inversion of the ankle that causes the ankle ligaments to pull a small piece of bone off of the end of the fibula. These fractures should be treated operatively with open plating of the fibula fracture and syndesmotic screw placement. proximal 1/3 tibia fractures account for 5-10% of tibial shaft fractures. Repair of the deltoid ligament tear is not believed to be necessary (. It may include some of the following approaches, used either alone or in combination: An open fracture occurs when the bone or parts of the bone break through the skin. Fractures of the tibia and fibula are typically diagnosed through physical examination andX-rays of the lower extremities. Vertical medial malleolus and impaction of anteromedial distal tibia, 2. It is caused by a pronation-external rotation mechanism. Tibia and fibula fracturesare characterized as either low-energy or high-energy. Ankle fractures are very common injuries to the ankle which generally occur due to a twisting mechanism. paralyzed), or those unfit for surgery, angulation and rotational alignment are well maintained with casting, however, shortening is hard to control, risk of shortening higher with oblique and comminuted fracture patterns, risk of varus malunion with midshaft tibia fractures and an intact fibula, high success rate if acceptable alignment maintained, non-union occurs in approximately 1% of patients treated with closed reduction, all open tibia fractures require an emergent I&D, surgical debridement within 12-24 hours of injury, wounds should be irrigated and dressed with saline-soaked gauze in the emergency department before splinting, all open tibia fractures require immediate antibiotics, should be administered within 3 hours of injury, standard abx for open fractures (institution dependent), cephalosporin given continuously for 24 hours, after definitive surgery in Grade I, II, and IIIA open fractures, aminoglycoside added in Grade IIIB injuries, tetanus vaccination status should be confirmed and appropriate prophylaxis should be administered if necessary, early antibiotic administration is the most important factor in reducing infection, emergent and thorough surgical debridement is also an, must remove all devitalized tissue including cortical bone, open fractures with soft tissue defects/contamination, uniplanar, circular, hybrid external fixators all available, should be converted to intramedullary nail within 7-21 days, ideally less than 7 days, longer time to union and worse functional outcomes, high rate of pin tract infections; avoid intra-articular placement given risk for septic arthritis, unacceptable alignment with closed reduction and casting, soft tissue injury that will not tolerate casting, ipsilateral limb injury (i.e., floating knee), reamed nailing allows for larger diameter nail, provisional reduction techniques (blocking screws, plating, etc), particularly useful for proximal 1/3 tibial shaft fractures, for closed tibia fractures treated with nailing, risks for nonunion: gapping at fracture site, open fracture and transverse fracture pattern, shorter immobilization time, earlier time to weight-bearing, and decreased time to union compared to casting, decreased malalignment compared to external fixation, improved fracture alignment with suprapatellar nailing, reamed may have higher union rates and lower time to union than unreamed nails in closed fractures (controversial), reamed nails are safe for use with open fractures, with no evidence of decreased nonunion rates in open fractures, recent studies show no adverse effects of reaming (infection, embolism, nonunion), reaming with the use of a tourniquet is not associated with thermal necrosis of the tibial shaft, despite prior studies suggesting otherwise, higher rate of locking screw breakage with unreamed nailing, proximal tibia fractures with inadequate proximal fixation from IM nailing, distal tibia fractures with inadequate distal fixation from IM nail, tibia fractures in the setting of adjacent implant/hardware (i.e. This is a fracture in the metaphysis, the part of tibia before it reaches its widest point. 2023 Lineage Medical, Inc. All rights reserved. Diagnosis is made with plain radiographs of the ankle. Fractures of the fibula can be described by anatomic position as proximal, midshaft, or distal. Open reduction and internal fixation is the surgery that can be used to reposition and physically connect the bones in an open fracture. There are different types of fractures, which can also affect treatment and recovery. Full healing usually is accomplished by 68 weeks. 2023 Lineage Medical, Inc. All rights reserved, Ohio Health Orthopedic Trauma and Reconstructive Surgery, 2. The shaft of the fibula serves as origin for the peroneus longus, peroneus brevis, peroneus tertius, extensor digitorum longus, extensor hallucis longus, tibialis posterior, soleus and flexor hallucis longus. Common proximal tibial fractures include: This type of fracture takes place in the middle, or shaft (diaphysis), of the tibia. prior total knee arthroplasty). A lateral malleolus fracture is a fracture of the lower end of the fibula. C1: diaphyseal fracture of the fibula, simple. The fibula is one of the two long bones in the leg, and, in contrast to the tibia, is a non-weight bearing bone in terms of the shaft. Maisonneuve fractures with syndesmotic injury imply injury to the medial side of the ankle joint. Maisonneuve fracture refers to a combination of a fracture of the proximal fibula together with an unstable ankle injury (widening of the ankle mortise on x-ray), often comprising ligamentous injury ( distal tibiofibular syndesmosis , deltoid ligament) and/or fracture of the medial malleolus. Accept Nielson JH, Sallis JG, Potter HG, et al. Long-distance runners and hikers are at risk for stress fractures. Both the posterior and medial malleolus arepart of the distal end of the tibia. If a fibula fracture is associated with a. One reason for this may be the treatment for the vast majority of isolated fibula shaft fractures is non-operative - this contrasts with the treatment of lateral malleolus fractures, which, although it is part of the fibula, technically, are categorized as ankle fractures and, therefore, have different treatment principles. (1/3), Level 3
- comminuted fractures of the fibula are often high energy injures resulting from direct lateral trauma or vertical loading; - comminution alters landmarks & complicates rotation and length assessment; Make linear longitudinal incision along the posterior border of the fibula (length depends on desired exposure) may extend proximally to a point 5cm proximal to the fibular head. Physical examination shows point tenderness and swelling in the area of fracture. Are you sure you want to trigger topic in your Anconeus AI algorithm? The fibula is one of the two long bones in the leg, and, in contrast to the tibia, is a non-weight bearing bone in terms of the shaft. make up about 17% of all lower extremity fractures, account for 4% of all fractures seen in the Medicare population, older patients - falls, lower energy mechanisms, proximal 1/3 tibia fractures account for 5-10% of tibial shaft fractures, low energy (fall from standing, twisting, etc), spiral fracture pattern with fibula fracture at a different level, high association of posterior malleolus fractures with spiral distal tibia fractures, more likely to be associated with a lower degree of soft tissue injury, high energy fx (MVA, fall from height, athletics, etc), leads to wedge or short oblique fracture that may have significant comminution with fibula fracture at same level, more likely to be associated with severe soft tissue injury, must rule out extension into tibial plateau on plain films or CT scan, high risk for valgus/procurvatum deformity, higher rates of ankle injury seen with distal 1/3 tibia fracture and spiral fracture pattern, posterior malleolus most common associated ankle injury which, in some cases, may affect syndesmotic stability, extension into or adjacent to tibial plafond may require separate/additional fixation and are managed differently than tibial shaft fractures, severity of muscle injury has highest impact on eventual need for amputation, more common in diaphyseal tibial shaft fractures than proximal or distal tibia fractures, 8.1% risk in diaphyseal fractures, compared to proximal (1.6%) and distal (1.4%) fractures, can occur even in the setting of an open fracture, all four compartments must be examined. Obtain 3 views of the ankle (AP, lateral, and mortise) to look for ankle fracture or syndesmotic disruption. 2023 Lineage Medical, Inc. All rights reserved, Posterior Malleolus and Fibula Fracture ORIF, Orthobullets Technique Guides cover information that is "not testable" on ABOS Part I, Fracture Preparation and Reduction (Fibula), Soft Tisue Dissection (Posterior Malleolus), Fracture Preparation and Reduction (Posterior Malleolus), firmly hold proximal tibia while contralateral hand dorsiflexes and externally rotates foot, 3-0 nylon for skin with horizontal mattress stitches, in diabetics or patients with high risk for skin breakdown, use modified Allgower-Donati stitch to reduce tension on skin, advance weight-bearing status in CAM boot, if syndesmotic screw(s) placed need to be non-weightbearing, Leg Compartment Release - Single Incision Approach, Leg Compartment Release - Two Incision Approach, Arm Compartment Release - Lateral Approach, Arm Compartment Release - Anteromedial Approach, Shoulder Hemiarthroplasty for Proximal Humerus Fracture, Humerus Shaft ORIF with Posterior Approach, Humerus Shaft Fracture ORIF with Anterolateral Approach, Olecranon Fracture ORIF with Tension Band, Olecranon Fracture ORIF with Plate Fixation, Radial Head Fracture (Mason Type 2) ORIF T-Plate and Kocher Approach, Coronoid Fx - Open Reduction Internal Fixation with Screws, Distal Radius Extra-articular Fracture ORIF with Volar Appr, Distal Radius Intraarticular Fracture ORIF with Dorsal Approach, Distal Radius Fracture Spanning External Fixator, Distal Radius Fracture Non-Spanning External Fixator, Femoral Neck Fracture Closed Reduction and Percutaneous Pinning, Femoral Neck FX ORIF with Cannulated Screws, Femoral Neck Fracture ORIF with Dynamic Hip Screw, Femoral Neck Fracture Cemented Bipolar Hemiarthroplasty, Intertrochanteric Fracture ORIF with Cephalomedullary Nail, Femoral Shaft Fracture Antegrade Intramedullary Nailing, Femoral Shaft Fracture Retrograde Intramedullary Nailing, Subtrochanteric Femoral Osteotomy with Biplanar Correction, Distal Femur Fracture ORIF with Single Lateral Plate, Patella Fracture ORIF with Tension Band and K Wires, Tibial Plateau Fracture External Fixation, Bicondylar Tibial Plateau ORIF with Lateral Locking Plate, Tibial Plafond Fracture External Fixation, Tibial Plafond Fracture ORIF with Anterolateral Approach and Plate Fixation, Ankle Simple Bimalleolar Fracture ORIF with 1/3 Tubular Plate and Cannulated Screw of Medial Malleol, Ankle Isolated Lateral Malleolus Fracture ORIF with Lag Screw, Calcaneal Fracture ORIF with Lateral Approach, Plate Fixation, and Locking Screws, RETIRE Transtibial Below the Knee Amputation (BKA), identify joint involvement and articular step-off (>25%, >2mm requires ORIF), rolls under chest and knees and bump under hip for neutral rotation, between FHL (tibial nerve) and peroneal muscles (SPN), lobster claw or pointed clamps with hand rotation to reduce fibular fracture, move to posterior malleolus and free up fragments, place buttress plate 1/3 tubular or T-plate over posterior malleolus, anterior to posterior screws and 1/3 tubular plate over fibula, perform Cotton test / external rotation stress test to determine if syndesmosis injured, 1 or 2 screws, 3.5/4.5mm, tricortical or quadricortical, 2 wks non-weight bearing in postmold sugartong splint, 4-6 wks in CAM boot with progression of weight bearing and range of motion exercises, identify amount of joint involvement and articular step-off (>25%, >2mm requires ORIF), posterior malleolus fractures <25% of joint surface and <2mm articular step-off can be treated non-operatively in short leg walking cast vs. cast boot, CT often needed to evaluate percentage of joint surface involved, identify ankle fracture pattern (Lauge-Hansen SA, SER, PA, PER) and associated injuries, need to evaluate syndesmotic injury with stress exam, stiffness of syndesmosis restored to 70% of normal with isolated posterior malleolus fixation alone, standard OR table with radiolucent end, c-arm from contralateral side perpendicular to table, monitor at foot of bed in surgeon direct line of site, 2.0/2.5mm drills, 2.7/3.5mm cortical screws, 4.0mm cancellous screws, 1/3 tubular plates (Synthes Small Fragment Set), prone with feet at the end of the bed, bump under hip to get limb into neutral rotation, thigh tourniquet placed while patient supine high on thigh before flipping prone, internervous plane between FHL (tibial nerve) and peroneal muscles (SPN), incision along posterior border of fibula, access fibula with posterior retraction of peroneals, access posterior malleolus with anterior retraction of peroneals, blunt dissection between FHL and peroneals, stack of blue towels under anterior ankle to elevate limb, mark out lateral malleolus, anterior and posterior borders of fibula, borders of Achilles, incision ~6-8cm in length along posterolateral border of fibula, 15 blade through skin then tenotomy scissors to spread subcutaneous tissue with minimal soft tissue stripping, identify SPN with more proximal fractures, take fascia down sharply over posterior border of fibula anterior to peroneal tendons, sharp dissection down to bone with subperiostel dissection at fracture edges, extraperiosteal dissection proximal and distal to fracture site with knife and wood handled elevator, clean out fracture site using freer to open fracture site, curettes, small rongeur, dental pick, and irrigation to remove hematoma and interposed soft tissue, use lobster clamp and pointed clamps to reduce fracture, use hand rotation and contralateral thumb to help guide fragments together, lobster clamp has good hold on bone while pointed clamps have a more fine-tuned feel for reduction, need to be perpendicular to vector of fracture line, place temporary kwires to provisionally fix fragments, identify interval between peroneals and FHL, identify FHL by flexing hallux and watching for muscle belly movement, need to protect and retract posterior tibial neurovascular bundle medial to FHL, place self retainers and incise periosteum over post mal with 15blade, clean fracture site as above with fibula, do not release PITFL off of fragment as this will destabilize syndesmosis and devitalize fragment, fracture should reduce with reduction of fibula, reduce with direct pressure pushing down onto fragment, two 3.5mm screws (2.5mm drill) anterior to posterior in T-plate distal, 2 screws proximal into distal tibia, check placement of plate and screws under fluoro, make sure screws are perpendicular to bone, do not want distal screws (typically 40mm) to protrude anterior and irritate tibialis anterior, after fixing posterior malleolus move back to fibula fracture, place lag screw (2.7mm screw/2.0mm drill) followed with 1/3 tubular plate using antiglide technique on posterior aspect of fibula, place 2-3 3.5mm bicortical screws (2.5mm drill), most distal screw will likely be 4.0 cancellous since its close to joint and/or syndesmosis, check plate and screw positions with fluoro on AP and Lat views, reduction tenaculum is placed ~2cm above joint and lateral pull applied, opening of the syndesmosis on mortise view is indicative of a positive stress test, if increased opening of tibia-fibular overlap syndesmosis is injured, anterior-posterior instability exam is most sensitive for syndesmosis injury, formally open the anterior aspect of the syndesmosis (anterior to fibula), remove interposing tissue if preventing reduction, place Weber pointed clamp or large periarticular clamp across syndesmosis, one tine on medial tibia and other on lateral fibula, hold foot in neutral dorsiflexion andinspect syndesmosis from lateral incision, inspect syndesmosis from lateral incision to ensure anatomic reduction, use 2.5mm (or 3.5mm) long drill bit to drill across fibula into tibia, drill bit orientation parallel to joint 2-4cm above joint, drill bit is angled ~20-30 posterior to anterior due to fibular position in syndesmosis, obtain final AP, mortise, and lateral radiographs, irrigate wounds thoroughly and deflate tourniquet if used, deep fascial closure over plate with 0-vicryl, soft incision dressing followed by postmold sugartong splint with extra padding under heel for immobilization, remove splint and place in short-leg cast boot, non-weight bearing, can allow ROM if soft tissue is appropriate, advance weight-bearing if diabetic, insensate, or syndesmotic screws present, syndesmotic screws to stay in for at least 12 weeks, syndesmotic screws will loosen or break if maintained, superficial and deep infections (1-2%, up to 20% in diabetics), peroneal irritation from posterior fibula antiglide plating, iatrogenic injury to SPN during fibula exposure, PITFL, posterior tibial neurovascular bundle during FHL exposure.